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Different theoretical methods for the description of nucleic
acid structures are reviewed. Firstly, we introduce the
concept of classical force-field in the context of nucleic acid
structures, discussing their accuracy. We then examine
theoretical approaches to the description of nucleic acids
based on: i) a rigid or quasi-rigid description of the
molecule, ii) molecular mechanics optimization, and iii)
molecular dynamics. Special emphasis is made ion current
state of the art molecular dynamics simulations of nucleic
acids structures.

Introduction

Genetics, biochemistry and molecular biology, as understood at
the beginning of the XXI century, would be impossible without
the knowledge of the structure of DNA, which justifies the
transmission of the genetic information and explains how this
information can be translated into simple instructions to the
cellular machinery.

Watson and Crick, in the middle of the fifties, reported the
first reliable model of the double helix,1 which was undoubtedly
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one of the most important scientific discoveries of the past
century. They arrived at this model based on scarce and rather
rough experimental data, which would be meaningless without
the intelligent use of molecular modelling made by these two
scientists. Using wires and bolts, they built up structural models
following two rules: i) the models should be consistent with the
physical rules governing the structure of molecules, and ii) they
should explain all the available experimental information. The
same basic rules are applied today, almost 60 years later, in
molecular simulations of nucleic acids.

Since the seminal work of Watson and Crick, simulation has
been one of the most powerful tools for gaining insight into the
nucleic acids. A simple reference analysis using Idealibrary web
server (www.idealibrary.com) for the period Jan 2000 to Sep
2002 shows around 9000 articles on nucleic acids containing the
keywords molecular dynamics, simulation or theoretical study
in their headers. Just considering the keywords DNA and
molecular dynamics, more than 2000 hits are detected in this
short period of time. Clearly, molecular simulation of nucleic
acids is now a mature field, and modelling techniques are
powerful tools for the description of nucleic acids. This paper
tries to summarize some of the most recent advances in this
field, with a special emphasis on the theoretical framework
underlying molecular simulations of nucleic acids. It is not our
purpose to perform an exhaustive revision of the current
literature, but to provide very general principles to understand
the strengths and weaknesses of simulations in nucleic acids,
especially for non-expert readers. More detailed reviews can be
found elsewhere.2–9

The classical approach

Simulation of nucleic acids requires a functional to connect the
coordinates of a system with its energy. This could be done a
priori using quantum mechanics (QM), which would allow the
calculation of the structure, dynamics and reactivity of nucleic
acids based on first principles. Unfortunately, QM techniques
are computationally very demanding when applied to large
flexible systems like hydrated nucleic acids. Thus, despite the
recent advances in the development of efficient codes for ab
initio molecular dynamics,10 the use of QM techniques in the
analysis of nucleic acids is rare, mostly limited to static studies
of reactivity or to the detailed description of small fragments.

Classical approaches assume that the nucleic acids can be
represented using Newton’s laws and simple equations (the
force-field) relating the nuclear structure of the system with its
energy. The level of accuracy in the representation of nucleic
acids and in the force-field leads to a variety of simulation
methods, which are oriented to the study of different aspects of
the nucleic acids. Thus, there is interest in the simulation of
macroscopic properties of very large segments of DNA, the
electrophoretic behaviour of nucleic acids, or its ability to wrap
around large proteins. But there is also interest in the atomic-
detailed study of the interactions occurring in a short piece of
DNA. Following ideas developed by Olson, Zhurkin2,6 and
Lavery’s,4 those methods can be classified in three categories:
i) ideal-elastic (macroscopic), ii) mesoscopic (intermediate),
and iii) microscopic models.

Macroscopic (ideal-elastic) models

Many aspects of the structure and functionality of nucleic acids,
such as the chromosome packing, superhelicity, hydrodynamic
and electrophoresis behaviour or the packing of nucleic acids in
viral capsids, are related to their macroscopic polymeric
nature.2 All these processes have two main characteristics: i)
they imply very large fragments of nucleic acids, and ii) the

mechanism involved in those processes should be very general
and independent of the particular characteristics of the nucleic
acid sequence. Therefore, the interest lies in the representation
of properties related to the general polymeric properties of
nucleic acids, and not to specific sequence-dependent structural
details.

Macroscopic elastic models assume that the nucleic acid is a
flexible ideal rod, whose properties can be represented using
principles of macroscopic mechanics.2 The model can be
enriched to include experimental data, like that derived from
electron microscopy, enzymatic footprinting or chemical cross-
linking experiments. When these models are used, deformations
of nucleic acids in any direction of the space or any part of the
rod are equally probable. This makes it possible, for instance, to
represent large pieces of DNA or even the entire ribosomal
RNAs,11 but only with a low resolution, thus neglecting fine
details related to environmental or sequence effects.

Mesoscopic (intermediate) models

The concept “mesoscopic” is very popular in physics, but not
commonly used in chemistry.12 It refers to the diffuse interface
between microscopic and macroscopic descriptions of a system,
i.e. the study of those systems too big to be treated at the
microscopic level, but too complex to be represented at the
macroscopic level. In the case of nucleic acids, mesoscopic
studies refers to the representation of very large pieces of DNA,
where sequence or environment effects makes unsuitable the
use of the ideal-elastic rod models2,6,13,14

These models divide the polynucleotide into small rod
elements, often named “beads”. Each bead is considered a rigid
entity, while the connections between “beads” are flexible and
allow the nucleic acid to adapt to external deformation forces.
The size of one “bead” can vary depending on the type of
problem under analysis (from a single base pair for medium-
sized oligonucleotides to several kilobases for an entire
chromosome). The deformation energy is computed using
elastic potentials, which distinguish between different type of
deformations. A typical elastic potential is shown in equations
1–3,13 where ß, t refer to bending and twisting angles and l to
stretching distance. The constants B, C and S define the rigidity
of a nucleic acid fragment in front of deformation of bending,
twisting and stretching. The subscript “0” denotes the equilib-
rium values for bending, twisting and stretching of a given
nucleic acid fragment.

Ebending = 0.5(B/l0)(b 2 b0)2 (1)

Etwisting = 0.5(C/l0)(t 2 t0)2 (2)

Estretching = 0.5(S/l0)(l 2 l0)2 (3)

The force-field parameters can be derived from the analysis
of macroscopic properties of known DNA sequences and from
the inspection of high resolution structures of short DNA
fragments. For instance, Figure 1 represents the roll versus twist
distribution of all the A- and B-type DNA sequences deposited
in the December 2002 release of the Protein Data Bank (PDB).
Some relevant features can be noted in Figure 1. First, only a
fraction of roll/twist combinations are allowed in the DNA
duplex. Second, these combinations are specific of the helical
(A or B) family. Third, significant differences exist in the roll/
twist distribution depending on the nature of the base pair
dimer. Thus, the center of the distribution for B-type DNA
changes from 23.7/36.5 (roll/twist; degrees) for purine–
pyrimidine steps to 2.9/35.8 for pyrimidine–purine steps,
indicating a different intrinsic equilibrium geometry for these
two types of sequences. Interestingly, not only the center of the
distributions, but also their shapes depend on the helical family
and the sequence. For example, the ratio between the number of
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different “visited” microstates (defined in 2 3 2 degree bins in
Figure 1) and the total number of visited microstates for a given
sequence in PDB (number of points in Figure 1) show different
values for B- (around 0.44) and A- (around 0.35) type DNAs,
suggesting different roll/twist flexibility between A- and B-
forms of DNA. The same calculation show also that for B-DNA
duplexes pyrimidine–pyrimidine tracks show less variability in
roll/twist values than pyrimidine–purine tracks, suggesting a
different intrinsic flexibility in both types of sequences. Clearly,
this type of result can be manipulated to derive “knowledge-
based” force-fields, which in turn can be exploited in meso-
scopic studies of the DNA.

The parametrization of mesoscopic models from crystal data
permits the connection of the microscopic features of poly-
nucleotides with their macroscopic properties. However, cau-
tion is necessary regarding the quality of the final parametrized
model. First, the number of high resolution nucleic acid
structures is still limited and clearly insufficient to derive
statistically significant parameters for all base pair steps.
Second, flexibility and deformability of DNA are dynamic
concepts, which might not be properly reflected in the structures
deposited in the PDB. Thus, an interesting alternative to the
parametrization of mesoscopic models relies on the use of
molecular dynamics (MD) simulations performed by using an
atomic-level representation of the nucleic acids.6,15 These
simulations provide maps of visited conformations similar to
those derived from the analysis of the PDB. This is illustrated in
Figure 2, which contains the roll/twist values visited in a 6 ns
MD simulation of a 12-mer RNA molecule. The MD-based
parametrization permits the inclusion of an unlimited number of
structures for the fitting, though in practice it will depend on the
computational capabilities. In particular, current MD simula-
tions (typically 1–5 ns) make it difficult to visualize slow
conformational transitions, which can be important in under-
standing the flexibility of nucleic acids.15 Moreover, the results

can be affected by the physical force-field, which has been
previously parametrized from experimental and quantum me-
chanical data. In contrast, this approach allows us to introduce
the dynamic properties derived from the analysis of the
trajectory in the parametrization process.

Microscopic models

Many functional aspects of the nucleic acids depend on fine
sequence and structural details, whose analysis requires an
atomic or quasi-atomic level of description. All the classical
microscopic models are based on the calculation of the
molecular energy for a given nuclear configuration using a
force-field. The differences between the methods are found in:
i) the representation of the nucleic acid (the degrees of freedom
considered), ii) the force-field, and iii) the post-processing of
the energy information derived from the force-field.

Level of representation of the nucleic acid

Most microscopic calculations pursue: i) to obtain an optimised
set of coordinates of the nucleic acid, ii) to sample the
configurational space of the system, or iii) to determine the
impact of external stimulus on the structure of the system. In
general microscopic methods consider all or almost all the
atoms of the system (some hydrogen atoms might not be
explicitly treated). However, the degrees of freedom explicitly
explored during the calculation can vary depending on the
“level of representation of the nucleic acid”, it being possible to
distinguish between atomic resolution models and collective
variables models.

Fig. 1 Roll/Twist distributions of the structures found in PDB of A- and B- type DNA. Base pairs at the extremes of the helices are removed from the study.
The rest are clustered in purine–pyrimidines (RY), pyrimidine–purine (YR), and pyrimidine–pyrimidine (YY) steps. All values are in degrees.
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Atomic resolution models. These do not assume any
previous knowledge on the behaviour of nucleic acids other
than that implicitly assumed in the development of the force-
field. Accordingly, all the atoms of the system are free to move
and their individual trajectories are in principle just restrained
by the interactions with the rest of the atoms. In practice, some
degrees of freedom, typically bond distances, are kept fixed to
improve the efficiency of the simulations (see below). These
models typically work in Cartesian coordinates and are intended
to study fine structural details (angle distortions in the sugars,
out of the plane bending of nucleobases, base opening,
rearrangements in hydrogen bond pattern, etc. ) of relatively
short (typically less than 15-mer) nucleic acid structures. In
most cases the solvent (water and counterions) is explicitly
represented at the same level of accuracy as the nucleic acid.
Typically, these models are coupled to MD algorithms (see
below).

Collective variable models. These models are specific to the
study of nucleic acid structures. They exploit previous knowl-
edge on the behaviour of these molecules to reduce the number
of degrees of freedom. For example, they generally ignore
degrees of freedom related to all bond lengths and most angles,
taking advantage of the fact that bonds and angles are very close
to their optimum values in most structures. Additional reduction
in the degrees of freedom arises from the use of pseudorotation
model, by the introduction of helical restrictions, or by
imposing the planarity in the bases or base pairs. Clearly, the
reduction in the degrees of freedom largely simplifies the
configurational space, but at the expense of a loss in
information. In their most simplified version, collective variable
approaches use simple ideal helical models of DNA, where the
structure is represented by means of a series of translational and
rotational parameters defining the position of bases and base-
pairs with respect to the helical axis, and the neighbour bases (or
base-pairs). Helical parameters have been very useful for the

description of canonical families of DNA and RNA, and
computer programs like Curves,16 NewHelix17 and 3DNA18 are
routinely use to characterize nucleic acid structures obtained
from X-ray, NMR or atomic-detailed simulations. Similar
algorithms can be use to generate starting conformations for
nucleic acid structures. Unfortunately, pure helical representa-
tions tend to neglect local distortions and may not be
appropriate to describe irregular nucleic acids, where the
definition of helical axis or base pairs is unclear.

An example of a successful collective variable approach is
the JUNMA (junction minimisation of nucleic acids) program
developed by R. Lavery and coworkers.19 JUNMA breaks the
structure into 3Amonophosphate nucleotides cutting at the O5A–
C5A bond. The nucleotides are then positioned in the space with
respect to a common helical axis using three rotational
(inclination, tip and twist) and three translational (Xdisp, Ydisp
and Rise) parameters. The nucleotides are not treated as rigid
entities, since a set of variable parameters (a few bond angles
and most torsions in the phosphoribose backbone) is defined.
This set is divided into two blocks: the first represents the
independent variables (those considered as explicit degrees of
freedom), and the second (the “dependent” set) include all the
other geometrical parameters that vary owing to changes in the
first set of parameters. Independent variables include the
phosphodiester (C3A–O3A and O3A–P) and glycosidic rotations,
three bond angles in the ribose and the C1A–C2A and C2A–C3A
rotations (the sugar is disconnected in the C4A–O4A bond).
Changes in this reduced set of independent variables are
accompanied by concerted movements in the “dependent”
flexible variables guided by harmonic restrains, which guaran-
tee the maintenance of “closure” conditions (C4A–O4A and C5A–
O5A bond lengths and a few bond angles). Summing up,
JUNMA reduces the degrees of freedom to six helix-related
translations and rotations plus five dihedral angles and three
bond angles per nucleotide. Other features of the program allow
the introduction of additional restrains to maintain strong

Fig. 2 Roll/twist distributions of different base steps of the r(CGCGAAUUCGCG)2 obtained in a 6 ns trajectory in water. MD simulation was carried out
using the PME protocol for long range effects and the AMBER-99 force-field.
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hydrogen bonds (following many known H-bond patterns) or
stacking interactions between selected bases.20

Similar approaches have been followed by Zhurkin and
Olson’s groups,21,22 who used a helical reference system where
six independent pair parameters (Propeller Twist, Buckle,
Opening, Shear, Stretch and Stagger), six step parameters
(Twist, Roll, Tilt, Shift, Slide and Rise), and the phase and
glycosidic angles are used to describe the DNA duplex
geometry. The method has been used to study the structure and
deformability of large pieces of duplex DNA,21 and can be
incorporated in both molecular mechanics and Monte Carlo
algorithms (see below).

Collective variables models are often applied in the context
of rigid-body or molecular mechanics optimizations, though
some authors have developed Monte Carlo21 or MD-adapted
codes (see below). The solvent is typically considered at an
implicit level by means of effective dielectric functions which
mimic the screening effect of water and counterions, and by the
reduction of the phosphate charges. Recently, efforts have been
made to treat explicitly counterions and water environments in
collective variables calculations (see below).

Microscopic force-fields

The force-field is a classical expression for the molecular
Hamiltonian, which connects the structure the system with its
potential energy. Many microscopic force-fields have been used
for the study of nucleic acids structure, and it is not our purpose
to revise all of them here. We will just summarize a few of the
characteristics of the most popular force-fields for current
microscopic simulations of nucleic acids.

A typical force-field computes the potential energy using a
general equation similar to that shown in equation 4, where Estr

and Ebnd stands for the stretching and bending energies (see
eqns. 5 and 6), Etor is used to represent the energy profile of
rotations around chemical bonds (see eqn 7), Enb stands for the
non-bonded interaction energies, and Eother accounts for any
other type of interactions included in the calculations, such as
improper torsions (in united-atom force-fields) experimental or
symmetry restrains, external potentials, etc.

E = Estr + Ebnd + Etor + Enb + Eother (4)

(5)

(6)

where Kstr and Kbnd stands for stretching and bending
constants, and l0 and Q0 are equilibrium bond lengths and
angles.

(7)

where n stands for the periodicity of the Fourier term, F is the
torsion angle, g is the phase angle and Vn is the torsional
barrier.

Force-fields used exclusively in collective variable calcula-
tions ignore stretching terms and many bending and torsion
contributions. Force-fields used in the atomic-level representa-
tion of nucleic acids might also neglect part or all of the
stretching contributions, but include all bending and torsion
terms into the calculation of molecular energy.

Non-bonded interactions typically include a van der Waals
term (Evw), which accounts for dispersion–repulsion inter-
actions between atoms, and a Coulombic term, which represents
the electrostatic interactions (Eele) between atomic charges.
Some force-fields include terms specific for hydrogen-bond

interactions. Finally, the newest generation of force-fields also
include terms related to polarization contributions, which are
expected to improve the representation of highly charged
systems like nucleic acids, but they are still experimental and
very costly, which explains their limited impact on the field.

The van der Waals term can be represented following
different formalisms, the simple Lennard–Jones formalism (see
eqn. 8) being the most popular. The parameters Aij and Cij (eq.
8) are typically obtained from atomic van der Waals parameters
using geometric or arithmetic combination rules. As noted
above, some force-fields include specific formalisms for
hydrogen-bonded systems. Thus, old versions of AMBER
force-field replaced the normal r212–r26 expression by a softer
r212–r210 formalism in hydrogen-bond contacts, and the same
procedure is used in Zhurkin’s force-field.21–23 The FLEX
force-field24 introduces a more complex formalism to deal with
hydrogen-bonds, which include different van der Waals param-
eters for normal and hydrogen-bond interactions, as well as a
directional term which ensures the linearity of H-bond inter-
actions (see eqn. 9).

(8)

where the sum extends for all non-bonded pairs.

(9)

where the sum extends for all non-bonded pairs involved in
possible H-bond interactions. Bkl and Ckl are H-bond van der
Waals parameters, and m is a directional angle formed by the
bonds X–H and Y…H in a X–H…Y hydrogen bond.

Electrostatics is the key issue in the representation of nucleic
acids. All force fields use a simple Coulombic expression like
that shown in eqn. 10, where the charges are typically (but not
always) located at atomic nuclei. The difference between force-
fields stems from the nature of the point charges used to
represent the charge distribution, and the treatment of the
dielectric screening. The first generation of force-fields used
charges obtained from low-level QM calculations and very
primitive charge population methods. Often, these charges were
scaled to reproduce experimental or QM data. The newest force-
fields, in their non-polarized versions, always use charges
derived from HF/6-31G(d) wavefunctions. The popularity of
this medium-level QM calculation conforms with its well
known tendency to overestimate polarity, thus mimicking the
polarizing effect of water. Different strategies have been
developed to derive point charges from the HF/6-31G(d)
wavefunction. In our experience, the (R)ESP method,25,26 used
for example in AMBER,27,28 is especially simple and power-
ful.

(10)

where the sum extends for all non-bonded pairs, and e is the
dielectric constant.

A remarkable difference between force-fields stems from the
description of dielectric response. The use of dielectric
functions in microscopic simulations is always uncomfortable,
since “dielectrics” is a macroscopic concept which in principle
should be captured intrinsically by simulation. Unfortunately,
this is only true if the system is heavily solvated, and if proper
sampling of the solvent configurational space is obtained. In
principle, this implies the inclusion of tens of thousands of extra
degrees of freedom in molecular dynamics or Monte Carlo
calculations, leading then to a dramatic increase in the cost of
the simulation.

Force-field calculations performed in the context of the
collective variables approach, like Zhurkin’s method,21,23
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DUPLEX29 or FLEX,24 typically use effective dielectric
functions, which are complemented by a scaling down (by 0.5
or 0.25) of the charge at the phosphate to mimic the counterion
environment. Many dielectric functions have been developed to
simulate the screening effect of water on charge–charge
interactions. The simplest one, still used in preliminary
optimizations of nucleic acids, is the linear relationship, with
scaling factors (EPS) ranging from 1 to 4 (eqn. 11). Debye–
Hückel screening functions (eqn. 12) have also been used in
early simulations. However, the newest dielectric formalisms
use sigmoidal functions, which better simulate the rapid
increase in dielectric response at a certain interatomic distance,
and the stabilization of such a response at large distances.
Examples of these functions include the popular Hyngerty’s
expression (eqns. 13–14; 30) and the Mehler–Solmayer func-
tional (eq. 15; 31). In our experience, both functionals
satisfactorily mimic the electrostatic potential derived from the
rigorous Poisson–Boltzman approach. Furthermore, when used
in standard force-field optimization routines, these functions
reproduce many characteristics of nucleic acids,21–24 but
obviously cannot reproduce fine details of solvent environment.
For a more complete explanation on effective dielectric
constant, see reference 32

e(Rij) = EPS · Rij (11)

(12)

where eH is the bulk dielectric of the solvent, and D is the
Debye length constant

(13)

where R is an empirical constant set to 0.356 in Hyngerty’s
original work and to 0.16 in a further refinement by Lavery’s
group.24 The permittivity function (f(eH)) is determined as
shown in eqn. 14

(14)

(15)

where in the original parametrization E = 28.5525, F = eH
2 E, l = 0.003627 and u = 7.7839.

Other effective dielectric functions and parameters have been
suggested, such as a very steep sigmoidal function recently
developed by Hingerty and Olson, which is optimized to
reproduce the electrostatic properties of B-type DNA du-
plexes,29 and that is used in a newly reparametrized version of
DUPLEX for simulations of DNA in the absence of explicit
waters and counterions.29

Traditionally, force-fields used in atomic-level representa-
tions of nucleic acids, like AMBER27,28 or CHARMM,33,34

introduce explicit representations of the solvent, avoiding then
the need to use effective dielectric constants (e(Rij) = 1 in eqn.
10). TIP3P35 and SPC36 models of water are the most
commonly used for nucleic acid simulations. More recent and
accurate models (including many-site potentials and/or po-
larized potentials) have not been able to replace these two
venerable models, which in our experience reproduce most of
the properties of water which are of interest in simulations of
nucleic acids.32

The use of explicit solvent representations presents many
advantages, especially when force-field calculations are cou-
pled to MD algorithms. However, the extra computational effort
can impede the simulation of large fragments of DNA or limit
the length of the MD simulations. This has stimulated the
development of intermediate methods based on continuum

solvent theories, which reproduce both the solute–solvent
interaction and the screening effect of solvent on intra-solute
interactions for a large range of systems.32 The most popular
one has been the Generalized-Born/solvent accessible surface
(GB/SA) approach, originally developed by Clark and Still,37

and now available in slightly different implementations (see ref.
32 for discussion). The GB/SA approach assumes that the
solvation free energy is determined as a combination of steric
and electrostatic effects (eqn. 16). Steric contributions (includ-
ing cavitation and dispersion terms) are typically represented by
means of an empirical linear relationship with the solvent
accessible surface using either universal or atom-specific
surface tension parameters (x in eqn. 17). The electrostatic term
is computed using an empirical generalization of the Born’s
equation (see eqns. 18–20). GB equations are of empirical
nature, but guarantee that in the limit of large and short
distances Born’s and Bell–OnsagerAs models of solvation for
monopoles and dipoles are fulfilled.32,37

DGsol = DGster + DGele (16)

(17)

(18)

where the empirical GB screening function is computed as:

(19)

with

(20)

where a stands for the Born’s radii determining the average
distance from a given atom to the solvent, and the scaling
constant d is typically set to 4,37 though other values have been
suggested.32

The bottleneck of a GB calculation is the determination of the
Born radii, since they depend not only on the intrinsic van der
Waals radii of atoms, but also on the position of all the other
atoms of the system. The numerical methods proposed initially
to compute the Born radii were accurate, but very slow, and
have been replaced for approximate methods, like those
developed by Hawkins et al.38 or Still’s groups,39 which
increase the efficiency of the calculation with just a small loss
in the quality of the results.

Case and coworkers40 have reported extensions of the GB
equation which include Debye–Hückel corrections to deal with
salt effects based on the substitution of the dielectric factor (see
eqns 20 and 21) by a term dependent on the Debye–Hückel
screening constant (D in eqn. 21). However, despite its potential
interest the use of Case’s approach has not became popular
yet.

(21)

where

g = 0.7DGGB

GB/SA methods have become very popular owing to the
balance between computational efficiency and accuracy.37–41

However, few words of caution seem necessary since GB us a
semi-empirical approach to solving the Poisson–Boltzman
equation33,42 whose use implies a large range of assumptions on
the nature of the solvent as a dielectric continuum. Furthermore,
the current implementations of GB/SA routines in MD
algorithms neglect of friction effects makes unrealistic the time
scale of solute movements. In our experience, this can lead to
artefacts in large MD simulations of nucleic acids when the GB/
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SA approach is used. In summary, GB/SA is one of the most
powerful approaches to simulate nucleic acids in physiological
environments. However, caution and common sense is neces-
sary to evaluate the goodness of the methodology to deal with a
given problem.

Accuracy of atomic-level force-fields. We can distinguish
between force-fields specific for nucleic acids and those of
general use. The first ones are typically used in the context of
collective variable models, and their parametrization was
mainly performed using known structural data of nucleic acids.
The general-purpose force-fields were typically developed in
the context of atomic-level representation of nucleic acids, and
were designed to represent both nucleic acids and proteins.
These force-fields were mainly parametrized from experimental
and QM data on small systems (nucleotides and peptides) and
tested by calculation of medium-sized macromolecules.

Among the variety of force-fields, CHARMM and AMBER
are clearly the most popular, probably because of historical
reasons. Calculations performed with the first versions of both
force-fields yielded reasonable representations of proteins, but
rather poor ones for nucleic acids. Part of these problems were
not strictly due to the force-field, but to other technical details of
the simulation, particularly the treatment of long-range electro-
static effects. In 1995 both Kolman’s and Karplus’s groups
developed a second version of their force-fields (CHARM-22;42

AMBER-9527), which combined with suitable methods to treat
long-range electrostatic effects (like the Particle Mesh Ewald
approach; PME43) reproduced quite accurately many static
properties of nucleic acids, and yielded stable MD trajectories in
physiological conditions without constraints (see refs. 5,7,8).
However, these force-fields present several shortcomings. For
example, AMBER-95 underestimates the average twist of
DNA, and has problems in reproducing the nucleoside con-
formation. On the other hand, CHARMM-22 was too A-philic,
and drives DNA structures to unrealistic conformations.
Refinements of AMBER-95 dihedral terms by Cheathman et
al.28 and CHARMM-22 by Mackerell and coworkers33,34 led to
AMBER-99 and to CHARMM-27, respectively. Independently,
using a hybrid strategy and mixing CHARMM-22 and
AMBER-95 parameters, Langley derived the BMS force-
field,44 which can be considered another refined version of
CHARMM.

The three latest force-fields (AMBER-99, CHARMM-27 and
BMS) provide accurate representations of standard DNA and
RNA structures. The root-mean square deviation (RMSD) of
the simulated nucleic acids with respect to experimental
structures is small, the dihedral distributions are correct, and the
average helical parameters are also reasonably close to the
accepted experimental values.8,27,28,33,34,44 Several details of
sequence-dependent conformational properties of DNAs are
also well reproduced (see ref. 8 for discussion). Interestingly,
coupling of these force-fields to MD algorithms allow the
representation of some basic transitions between nucleic acid
conformations, like the A ? B transition of duplex DNA in
water45 or the same transition in parallel DNA triplexes.46 Very
impressively, Beveridge’s group recently showed47 that MD
calculations using one of these force-fields (AMBER-95)
reproduced crude NMR data (NOESY volumes and dihedral
angles) with good accuracy. In fact, the theoretical models
generated by the MD simulation using AMBER-95 reproduce
NMR spectra better than X-ray or fibber diffraction struc-
tures.

However, despite their success, some caution is still neces-
sary with the latest generation of force-fields, since the
refinement process which ensures the quality of simulated
structures might bias the conformational space accessible to the
nucleic acid. This not only might generate problems in the
simulation of non-standard nucleic acid structures, but also in
the general representation of nucleic acids flexibility. The later

issue was pointed out by Cheatham and coworkers,8 who
detected that the refined AMBER-99 force-field has poorer
sampling ability than AMBER-95, it being unable to reproduce
(on the ns time scale) some transitions and conformational
movements which were well represented by AMBER-95. For a
detailed discussion of the characteristics of the different force-
fields, we address the reader to the original papers26,27,32,33,43

and to refs. 5, 7, 8 and 48.
Choice of one force-field over the other conforms in most

cases to tradition, to the possibility to obtain new parameters,
and to knowledge of the force-field characteristics. BMS seems
to be the most rigid force-field, but that which better reproduces
experimental structures of duplex DNA and RNA, and is
excellent in reproducing AÔB conformational changes.
AMBER-99 still underestimates twist in canonical DNA
duplexes compared with X-ray data, and has problems to
reproduce BÔA transitions, but seems to be a quite well
balanced force-field. Finally, CHARMM-27 shows similar
characteristics to AMBER-99 (something expected considering
the similarity of the parametrization process), but improves the
average twist of the DNA duplexes at the expense of a reduction
in the flexibility of the system.8 Clearly, all these conclusions
are obtained from the analysis of standard nucleic acids. For
non-standard structures, comparison with experiment, and
accordingly benchmarking of the force-fields is more difficult.
In the last years, our group has been using AMBER-95 and
AMBER-99 for the simulation of many anomalous nucleic acid
structures (including triplexes, tetraplexes, PNA-hybrids, mu-
tated DNAs, RNA·DNA hybrids etc.), and we feel in general
satisfied with the performance of these force-fields.

Though the ability to reproduce experimental structures of
nucleic acids is a great success of current force-fields, further
efforts are necessary to check the quality of the force-field by
independent tests. In this area, it is worth mentioning the studies
performed by Hobza and coworkers comparing QM estimates
of nucleobase-nucleobase (including stacking and H-bonds
complexes) interaction energies with force-field values.49 For
the force-fields available at that time, the best results were
obtained with AMBER-95/99,50 which shows a surprisingly
good ability to reproduce MP2 data. Our group has also studied
numerous (normal and anomalous) nucleic acid structures
containing modified nucleobases, which were not present in the
original AMBER-95/99 force-field, like 8-aminopurines, di-
fluorotoluene, uracil derivatives, minor tautomers of purines
and pyrimidines, isoguanine, oxanosine, thioguanine and many
other non standard purines and pyrimidines. Force-field param-
eters for the modified nucleobases were typically tested by i)
comparison of force-field estimates of nucleobase-nucleobase
interaction energies with MP2 and B3LYP calculations, ii)
comparison of force-field and B3LYP estimates of the energy of
selected water–nucleobase complexes, and iii) comparison of
force-field and MST/6-31G(d) estimates of hydration free
energy. In all cases we have found that the parametrization
procedure used in AMBER is powerful and robust, and the fitted
parameters accurately reproduced QM data.

As an additional test on the quality of AMBER-95/99 force-
field, we examined the ability of simple force-field calculations
to predict the DNA conformation as a stable arrangement for the
constituent nucleobases. For this purpose, we first defined
potential energy maps corresponding to the interaction of two
nucleobase pairs with all the helical parameters set to the
standard B-type ones, except two of them (see Figure 3) which
were systematically varied within a reasonable range. In
parallel, we analysed the B-DNA structures deposited in the
December 2002 PDB release using Olson’s 3DNA program18 to
characterize the helical parameters for different base-pair steps.
Figure 3 compares the results of both energy and database
analysis performed here. Two types of useful information
appear: i) within the steric constraints imposed by the helical
backbone, the local geometry of the many base-pair steps is

356 Chem. Soc. Rev., 2003, 32, 350–364



dominated by nucleobase–nucleobase interactions, i.e., many
properties of DNA can be represented at the base-pair dimer
level (as done in mesoscopic models), and ii) AMBER-95/99
force-field seems able to define with accuracy the most stable
geometries for the pairs of nucleobases.

In summary, atomic-level force-fields provide good repre-
sentations of nucleic acid structures in dilute aqueous solutions
in the presence of Na+ or K+ as counterions. Clearly, some
improvement in the parameters might be possible if new high
quality experimental data is introduced in the parametrization.
However, in our opinion, current force-fields are close to
convergence, and no further major improvements appear
evident unless the general formalism of the force-field is
changed. In fact, further refinements guided by an over-concern
in reproducing known experimental structures might lead to
unbalanced force-fields unable to reproduce structures or
properties not considered in the calibration. In our experience
the most relevant shortcomings of current force-fields involve
the representation of interactions with bivalent cations like Ca2+

or Mg2+, which strongly influence the charge distribution. The
limitation of current force-fields to deal properly with these two
cations is especially disappointing considering their physio-
logical importance and their occurrence in X-ray structures. In
the near future, we can expect problems in force-field related to
the neglect of polarization and charge-transfer effects in
simulations of nucleic acids regarding the introduction of
cationic species of Pt, Zn, Ag, Au, or Cd. Either the
generalization of QM/MM methods or the use of new force-
fields including polarization and charge-transfer terms seems
necessary.

Post-processing of force-field calculations

The output of a force-field calculation is the energy associated
with a given nuclear configuration. This information can be

used directly or post-processed using different algorithms.
According to the post-processing we can then divide force-field
based methods in four categories: i) rigid calculations, ii)
molecular mechanics, iii) Monte Carlo (MC), and iv) molecular
dynamics (MD).

Rigid calculations. The simplest calculations are those based
on a rigid structure, which can be useful to obtain average
representations of the intrinsic reactivity of nucleic acids. Single
point calculations, which combine the non-bonded part of force-
fields with continuum representations of the solvent,32 provide
very pictorial representations of the intrinsic ability of nucleic
acids to interact with a given probe molecule. For example,
Figure 4 shows the regions where a Na+ molecule (“the probe
molecule”) is most likely to interact with a 12-mer RNA.
Despite its static nature, this information is very useful to
describe the ability of nucleic acids to interact with small
cationic groups like minor groove binders. For example, it was
exploited to predict possible protein–triplex DNA inter-
actions,46 and to design chemical changes that stabilize parallel
triplexes.46,50

Molecular mechanics (MM). These methods use gradient
techniques to find conformations of nucleic acids which
minimize their potential energy. MM methods have been widely
used due to their formal simplicity and reduced computational
cost. Unfortunately, they present several shortcomings: i) they
do not provide a dynamic picture of the system, and ii) for large
systems optimisations are typically trapped in local energy
minima close to the starting configurations, but far from the
absolute minimum. In our opinion, MM calculations should be
considered only as a preliminary step to Monte Carlo or MD
simulations. More powerful are MM calculations in the context
of collective variable representations of nucleic acids, where

Fig. 3 Selection of some base-base interaction energy energy maps of different base pair dimers (contours are displayed each 1.5 kcal/mol). The maps are
obtained in this work by changing two helical parameters (X and Y) while the rest are set at equilibrium values. The projection of the B-DNA type structures
in Dec 2002 release of PDB on the X¡Y map are displayed as square symbols in the map.
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only a reduced number of significant degrees of freedom are
considered, and where the solvent is implicitly included.

Interesting MM calculations in the context of collective
variable models have been reported (see ref. 4 for a recent
reviews) by Olson’s and Lavery’s groups.51,53 For example,
Olson and coworkers analyzed the energy profile of DNA and
RNA under the action of stretching and compression forces. The
extreme plasticity of nucleic acid duplexes was reflected in
compression/stretching factors of 1

2 or 2 without a dramatic
decrease in stability.22,52 Using similar techniques, the same
group also investigated the DNA bending induced by asym-
metric phosphate neutralization,53 a process which can have a
dramatic impact in the formation of nucleosomes, and other
DNA–protein complexes. Using JUNMA methodology, Lavery
and coworkers examined a large variety of deformations in
DNA.4,51 Within this context, they introduced the concept of
“lexide”, which has been implemented in the ADAPT-JUNMA
method.19,51 A “lexide” is defined as a hybrid nucleobase,
which contains different percentages of each natural nucleo-
base. To define a lexide in a given position of the DNA, the four
nucleobases have to be superimposed along their C1A–N1/N9
glycosidic bonds. The four nucleobases do not see each other,
and their interactions with the rest of the DNA are modulated by
a coefficient ranging from 0 to 1. For example, a “lexide”
defined by coefficients CA = 1, CG = 0, CT = 0, CC = 0 will
be equal to an adenine, while a “lexide” defined by coefficients
CA = 0.5, CG = 0.5, CT = 0, CC = 0, will be equal to a generic
purine (see eqn. 22). The energy of a DNA containing different
“lexides” will be computed as shown in equation 22.

(22)

where Eintra stands for the intramolecular term, the second
term accounts for all interactions involving normal nucleobases,
the third term accounts for the interactions between the lexides
(X) and normal nucleobases and the last term for lexide–lexide
interactions.

The use of “lexides” in collective-variable MM algorithms
allows the performance of very fast calculations of combina-
tional studies of sequence effects on DNA structure. For
example, let us assume that two conformations exist for a given
DNA, the normal one (N) and a distorted one (D), and we wish
to study how different sequences favour/disfavour the N?D
transition. This will be almost impossible with usual method-
ologies if the number of studied sequences is large. However,
the same calculation is simple in JUNMA-ADAPT framework,
since only one optimization (with lexides in all the positions of
interest) is performed for each (N, D) state. Deconvolution of
the computed energy using eqn. 22 will then provide almost
instantaneous estimates of how well a given sequence will adapt
to the N?D transition.

Monte Carlo (MC). This approach is typically applied
within the traditional Metropolis implementation, and can be
considered as the simplest alternative to obtain an average
picture of the configurational space accessible to molecules.
The method generates a Markov’s chain of configurations,
where a new configuration {X} is randomly generated from a
previous one {X0} and accepted or rejected based only on the
relative stability of configurations {X} and {X0}. The genera-
tion of a new configuration is made by perturbation of the
previous one, the perturbation being fitted to obtain a reasonable
acceptance ratio (typically around 40%). To improve the
efficiency in sampling, MC methods work in the internal space,
and the degrees of freedom considered are directly controlled by
the user, which makes MC methods well suited for the
collective variables approach.

MC methods became popular years ago as a cheap strategy to
study DNA interactions. In these studies, the DNA was
considered to be a rigid molecule surrounded by one of several
interacting particles free to move around it. Other authors,
including Zhurkin and coworkers, have used Metropolis MC
techniques to study the influence of thermal fluctuations in the
bending of A-track sequences of DNA,21 but in general the use
of MC to study flexible nucleic acids is rare. The reason is
probably related to the intrinsic problems of these techniques to
deal with conformational changes in long solvated polymers,
where the internal coordinates are intercorrelated in a very
complex way. Different authors (for a review see ref. 4) have
suggested possible solutions to this problem by using implicit
solvent models and the collective variables approach, and future
popularisation of the use of MC techniques in DNA can be
expected.

Molecular dynamics. MD is probably the most popular
computational strategy for the study of flexible nucleic acids.
The method is based on the integration of the equations of
Newton’s equations of motion. A MD calculation starts with a
set of initial coordinates (derived from experimental data or
modelling) and velocities (typically generated randomly at a
given temperature). The force-field determines the potential
energy and the forces acting on the system, and Newton’s
second law is then used to determine accelerations on each
particle. Numerical integration of these accelerations provides a
set of new velocities and positions, which are collected to build
up a trajectory. Typically, time steps of 0.5–2 fs are used for
integration of Newton’s laws of motion, which implies that 1 ns
of MD trajectories need around 106 calculations of energies and
forces acting on the system. Current MD protocols include
algorithms to fix the temperature and the pressure, allowing
then the simulation of nucleic acids under conditions close to
the physiological ones.

MD is a technique that naturally works on Cartesian
coordinates, and accordingly it is typically applied with atomic-
level representation of nucleic acids. Bond lengths (all or just
those involving hydrogens) are the only degrees of freedom
which are typically frozen in MD simulations. Most MD

Fig. 4 Molecular interaction potential maps for the RNA–Na+ interaction.
Structure of RNA was obtained by averaging a 6 ns MD simulation.
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simulations of nucleic acids are done using explicit solvent
representations including thousands of water molecules and
periodic boundary conditions (PBC). Ions (typically Na+ and
Cl2) are introduced to neutralize the system and simulate a
given ionic strength.

The MD simulation of nucleic acids is especially complex
due to the strong interactions between charged particles. In fact,
until 1995 unrestrained MD simulations of DNA duplexes in
solution led to unfolded structures after a few hundreds
picoseconds irrespective of the force-field used in the calcula-
tion. The situation improved dramatically with the introduction
of efficient variants of the Ewald summation technique (like the
PME method43) to account for long-range electrostatic effects.
Clearly, when PME-PBC conditions are used, artefactual
periodicity is introduced in the simulation of diluted nucleic
acids, which a priori might bias the simulations. However, in
our experience if large boxes of water are used to solvate nucleic
acids, the PME-PBC treatment has not a dramatic influence in
the trajectories.

Current state-of-the-art PME-PBC MD simulations of me-
dium-size nucleic acids (like a 12-mer duplex DNA) cover
around 5–10 ns of unrestricted trajectory. This time scale is
large enough as to sample conformational space around
minima, or to detect fast transitions, as for the A?B transitions
in duplex and triplex DNA in water.45 However, many
conformational transitions occur in a longer time scale, and
cannot be captured by current MD simulations. These slow
movements include not only folding/refolding of DNA du-
plexes or the local opening a duplex, but also subtle changes like
some sugar re-puckerings, most breathing movements, or the
Na+ reorganization around DNA. Caution is then necessary to
evaluate the ability of MD simulations to provide correct picture
of a conformational transition in nucleic acids.

In our opinion, incomplete sampling is the most important
source of uncertainties in current MD simulations of nucleic
acids. Extension of trajectories can be obtained by three
sources: i) increase in the speed of the force/energy calculation,
ii) use of simpler Hamiltonians or systems, and iii) increase in
the integration time step. The increase in the power of
computers has been crucial for the generalization in the use of
MD codes. In our own group, the improvement in computer
power explains a 10-fold increase in the length of the
trajectories in 5 years. Very recently, the popularisation of
Lynux-clusters has stimulated the parallelization of codes,
leading to more efficient programs. The existence of these new
computer platforms explains also the tendency to replace one
single large trajectory by many smaller trajectories. This
strategy might be successful to analyse systems in equilibrium,
but caution is necessary if this approach is used to analyse, for
example, conformational transitions.

The reduction in the number of particles and degrees of
freedom of the system is typically obtained by using simplified
solvent models. A first possibility is the use of microsolvation
conditions combined with some damping of the phosphate–
phosphate repulsion, but in general this is not advisable, at least
for atomic-detailed MD simulations of nucleic acids, since very
distorted structures are obtained (T. Cheatham private commu-
nication). A more popular strategy is to represent the solvent by
using a continuum model, which avoids the need to introduce
explicit solvent molecules. Several codes including AMBER
and CHARMM incorporate efficient implementations of the
GB/SA model (see above). As noted before, we just underline
that these methods can be accurate enough in some cases, but in
general we recommend caution in the use of this methodology,
which is far from being a black-box.

The use of collective variables models in MD simulation
raises many technical problems, but might allow a priori some
improvement in the efficiency of sampling the conformational
space. This has been exploited by Mazur, who using the Internal
Coordinate method54–57 in conjunction with AMBER-95/99

force-fields studied different structural and conformational
aspects of the duplex DNA. Using this technique, combined
with the microsolvation scheme, reduction of phosphate charges
and use of a distance-dependent dielectric constant, Mazur
obtained stable trajectories of Dickerson’s dodecamer 54 and
reproduces the A-track induced bending in DNA.55 Recently,56

a version of the method which incorporates Ewald summation
technique has been developed (the periodic system considered
here is a water drop containing the DNA placed in a rectangular
box surrounded by vacuum) and used to study the Na+

atmosphere around DNA. Clearly, the great advantage of
Mazur’s method is the possibility to reduce the degrees of
freedom of the system, freezing those involved in the fastest
vibrations, and allowing then the use of a very large integration
step (10 fs). Once again some caution is necessary, since the
stability of a trajectory does not guarantee its quality, but it can
reflect a poor ability to sample the conformational space.

Analysis of the MD trajectories. The analysis of the
trajectories is a key issue in a MD simulation. For systems in
evolution the trajectory shows the movement from one unstable
state to a stable one. For systems in equilibrium, the trajectory
represents a Boltzman’s sampling of the configurational space
accessible to the molecule, which can be used to derive
statistical descriptors of the system. The approaches developed
to analyse the trajectories can be classified in four major
categories: i) average structural data, ii) dynamic structural
information, iii) interaction profiles, and iv) stability (free
energy) information.

Average structural data. This is obtained by analyzing the
MD-averaged structure, which is derived by averaging the
Cartesian coordinates of the nucleic acid along a stable portion
of the trajectory and further refining by MM algorithms. The
MD average structure can be analyzed for any specific
structural detail (intra- or intermolecular distances, backbone
dihedrals, H-bonds, solvent accessible surface, radii of gyra-
tion,…), or simply compared with available experimental data.
MD-averaged structures are typically analyzed using standard
programs such as Curves,16 NewHelix17 or 3DNA,18 which
provide a very complete set of helical parameters defining the
structure of the nucleic acid according to accepted rules.

Dynamic structural information. This is obtained from the
analysis of thousands of the structures collected at constant
intervals (typically 1–5 ps) during a stable part of the trajectory,
which are analyzed using similar codes to those considered for
the MD-averaged structure. Thus, information is gained not
only of the average value of a geometrical parameter, but also of
its time evolution and flexibility. All this information can be
processed to characterize conformational changes or molecular
flexibility. In some cases, comparison with experimental B-
factors (eqn. 23) can be performed, but in other cases no direct
comparison with experimental data is possible, and caution
must be taken, since the flexibility detected in MD simulation
can be influenced by the force-field and subtle simulation
details.

B = (8p2/3) < Dr2 > (23)

where Dr are the atomic fluctuations with respect to the
average position.

Recently, essential dynamics has been used to perform a
more quantitative description of the motions of nucleic acids.
The technique determines the motions of a structure that
explains most of the variance detected during the trajectory.
Technically, this implies the diagonalization of the covariance
matrix leading to a set of 3N (N = number of atoms in the
system) eigenvalues and eigenvectors. One eigenvalue repre-
sents the percentage of variance explained by the corresponding
eigenvector (ni). By using harmonic approximations, the
eigenvalues can be translated into frequencies, which indicate
the softness of a given essential motion. The eigenvectors can be
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considered to be 3N dimensional vectors representing the nature
of the essential motion. The eigenvectors of one trajectory can
be compared with those of another trajectory, deriving quantita-
tive measures of the similarity between the essential motions of
two independent trajectories (see eq. 24).

(24)

where n stands for the minimum number of eigenvectors
which explain more than a given threshold of the variance
(typically we use 90% in simulations of nucleic acids) of the
trajectories (A and B).

Essential dynamics calculations are very useful for determin-
ing MD trajectories. However, caution is needed in the analysis,
since the technique is very sensitive to the extension of the
trajectory and to numerical errors in the calculations, and can
neglect important local distortions in favour of general, but
perhaps less relevant movements. It is very important to keep in
mind that essential motions are detected only if they occur in the
MD trajectory, but slow motions might be difficult to detect in
current “state-of-the-art” simulations (5–10 ns). Systematic
studies performed in our group dividing large trajectories of
DNA into smaller non-overlapped subtrajectories found sim-
ilarity indexes around 0.7–0.9 when two equal portions of the
same trajectory are compared, indicating a non-negligible
dependence of the results on the initial conditions and numerical
errors in the simulation. Additional sources of error exist in the
definition of a common reference system for the trajectories,
and on the elimination of translational and rotational degrees of
freedom of the molecule. Caution and common sense is then
necessary for a reasonable use of the very powerful essential
dynamics tool.

Following the philosophy of essential dynamics, Lankas et
al.58 have developed an interesting method to derive elastic
properties of standard nucleic acids from extended nucleic acid
calculations following ideas previous developed previously by
Olson and coworkers.59 The method projects the Cartesian
coordinates collected along the dynamics in a reduced set of 4
internal coordinates, which are derived from Curves calcula-
tions, and represents several common deformations of the DNA
duplex. The elastic energy (defined as the minimum work
necessary to deform the fragment out of equilibrium) is
determined from the oscillations of these four variables around
their equilibrium values using a complex equation. The force-
constants defining the different types of elasticity are obtained
by inversion of the covariance matrix obtained in the reduced
four-dimensional space. The method has been successfully
applied to derive sequence-dependent elastic properties of
DNA,58 and might have a large impact in the derivation of
mesoscopic models for DNA simulation. The method is clear
and simple to implement, and provides a very intuitive picture
of nucleic acid deformability, a phenomena difficult to
characterize by other techniques. However, it relies on a
simplified picture of nucleic acid deformability, whose validity
for non-standard nucleic acids has not been yet demonstrated.
Evidence is also needed on the dependence of the results on the
length of the trajectories, since we might expect that the DNA
would appear more rigid in short than in large trajectories.

The dynamic analysis of a trajectory is not limited to the
macromolecule, but can be performed also for solvent mole-
cules. In this field, radial or cylindrical distribution functions
(see eqn. 25) have been used to obtain information about the
solvent distribution around the nucleic acids. More powerful are
solvent density maps (see Figure 5), since in this case the local
solvent density is projected in regular grids, without assumption
of any particular geometrical dependence (eqn. 26). Note that in
the limit of a rigid molecule, the density maps allow us to obtain
free energies of transfer of a solvent molecule from a random
position in a pure solvent to a given position around the nucleic

acid (see eqn. 27). The criticisms of the technique are mostly
related to the use a common grid for the entire trajectory
(typically defined from the MD-averaged structure), which for
flexible molecules can lead to an artefactual smoothing of the
solvent density maps. The use of grids defined in internal
coordinates allows the grid to follow macromolecular move-
ments, leading then to more realistic solvation maps.60

Unfortunately, the use of grids in internal coordinates has not
yet become popular in the field.

(25)

where r is the density of solvent, and åNiÅ is the population of
solvent molecules i found during the dynamics in the volume
element (dV) defined by radial distances r and r + dr.

(26)

where k stands for a grid element of grid volume DVk

DGs?k = 2kT ln(dm)k (27)

Stability calculations. The information derived from the MD
simulation of a nucleic acid or a nucleic acid complex can be
processed to estimate the absolute or relative stability of the
system. This is done by assuming a partition in the free energy
of the system (see eqn. 28) in intramolecular free energy (here
complexes are considered as a supermolecule), and the
solvation free energy. The intramolecular free energy is in turn
divided into intramolecular enthalpy and entropy (see eqn. 29).
The first is obtained directly from energy calculations using the
ensemble of structures collected in the trajectory, and the same
force-field considered in the MD simulations (see equation
29).

G = Gintra + Gsolv (28)

(29)

The intramolecular entropy can be derived using quasi-
harmonic methods like those derived by Karplus’s group (see

Fig. 5 Water density maps corresponding to a RNA dodecamer. Water
density data are obtained from 6 ns MD samplings (see text).
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eqn. 30 and ref. 61) or Schlitter (see eqn. 31 and ref. 62), which
are based on the diagonalization of the covariance matrix and on
the assumption of the harmonic oscillator for each macro-
molecular vibration. We have used quite systematically the
Schlitter’s method to derive intramolecular entropies, finding a
reasonably good ability to describe the entropy of normal
nucleic acids. In our hands, similar results are found with the
method developed by Andricioaei and Karplus.

The possibility of obtaining entropies from MD simulations
is very attractive, since entropy has been always considered the
most elusive magnitude in molecular simulations. However, we
cannot ignore the large number of approximations implicitly
assumed. First, the harmonic treatment of vibrations might be
valid only for structures fluctuating around a single minima, but
not for molecules displaying a complex dynamics. Second, the
entropy reflects the extension of the configurational space
accessible to a macromolecule, and accordingly it is very
sensitive to the length of the trajectory.63 This is clear in Figure
6 which represents the entropy of a RNA dodecamer obtained

when Schlitter’s method is applied to windows of 1, 2,…6 ns of
a common trajectory. Fortunately, the relationship between
entropy and the length of the trajectory can be fitted in most
cases to an exponential relation like that found in eqn. 32,63

which allows us to obtain from finite simulations the entropy
expected for an infinite simulation SH. The use of SH has many
advantages with respect to individual entropy estimates, but in
our experience non negligible numerical uncertainties are still
expected for current trajectories of nucleic acids.

(30)

(31)

where ai = Hwi/kT; w being the eigenvalues (in frequency
units) obtained by diagonalization of the mass-weigthed
covariance matrix (see explanation of essential dynamics). The
sum extends to all the non-trivial vibrations of the system.

(32)

where a and b are fitted parameters
The calculation of the solvation free energy is performed

using continuum models applied to the ensemble of structures
collected along the trajectory (see eqn. 32). The GB/SA method

has been used by different authors to obtain the free energy of
solvation, but in our experience more consistent results are
obtained with methods based on the numerical solution of the
Poisson–Boltzman equation (PB/SA; for a discussion see ref.
32). However, irrespective of the method used to compute
solvation free energies, the intrinsic shortcomings of continuum
methods to describe solvation in complex polianionic systems
cannot be ignored.32

(33)

The use of equation 28 has became very popular for the
analysis of trajectories obtained with explicit solvent repre-
sentation since it was suggested by Kollman and coworkers,64

because it provides a very intuitive description of the stability of
the nucleic acids or their complexes. The intrinsic errors related
to the use of equation 28 are those derived from the
simplifications used for the computation of each term, and from
the numerical errors in the averaging originated from the limited
length of the trajectories. Strategies to reduce the noise in the
calculation of molecular free energy other than the “pure force”
solution of the increase in the length of the simulation must be
developed to improve the ability of MM/PB-SA to describe
small changes in stability. For structures with common-
repetitive sequences, our group uses a strategy based on the
parallel calculation of trajectories of oligonucleotides of
different sizes placed in the conformations of interest. The total
free energies follow a perfect linear relationship (r2 = 1.0000 in
all the cases) with the length of the oligonucleotide. The
corresponding regression equations (one for each structural
model considered) can then be used to derive with high
statistical quality estimates of the difference in stability between
two structural models.64,65

A more rigorous approach to compute free energy estimates
in nucleic acids relies in the use of classical statistical
mechanics. Among the different methods developed to compute
free energy differences between two states, free energy
perturbation (FEP) and thermodynamic integration (TI) have
become the two most popular ones in the field. Both FEP and TI
compute the free energy difference between two states by
mutation, i.e., one state is moved slowly to the other by a
physical or unphysical reversible way. In most cases, this is
achieved by coupling the system Hamiltonian to a variable l,
which changes from 0 (state A) to 1 (state B), as shown in
equation 34. The free energy associated to the change is
computed as displayed in equations 35 (TI) and 36 (FEP). The
two states might refer, for example, to two different conforma-
tions of a molecule, the bound and the unbound form of a
complex, etc. Furthermore, in conjunction with suitable themo-
dynamic cycles, TI and FEP can be used to compute the impact
of a given chemical change in the stability of a nucleic acid, or
to determine how a chemical change in the structure of a ligand
can alter the binding affinity to the nucleic acid (see Figure
7).

Hl = (1 2 l)HA + lHB (34)

(35)

(36)

Equations 35 and 36 are formally exact provided the
sampling at l is correct, and the perturbations Dl are small
enough to guarantee a smooth reversible pathway between
states A and B. In practice, equations 34–36 are useful only
when states A and B are close enough. For example, FEP and TI
are very accurate to determine the impact on the stability of a
nucleic acid structure of transitions between related purines or
pyrimidines,50,65,66 but they will be more noisy to study

Fig. 6 Entropy estimates of a RNA dodecamer obtained from Schlitter’s
treatment and considering samplings obtained in windows of different size
along a common trajectory.
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purineÔpyrimidine transitions. Similarly, these methods will
be accurate to determine the difference in binding free energy
between two very similar drugs, but not between two very
different molecules. FEP and TI have also been used to study
some transitions of nucleic acids,67–69 but these techniques will
provide accurate results only when there is a clear reaction
coordinate, and when the potential energy surface is smooth.
Intense research effort is being put into the development of
more powerful techniques for the calculation of free energy
differences based on the same principles that give rise to
equations 35 and 36. Among them, methods like adaptative
umbrella sampling (A-US70), or the related weighted histogram
method (WHAM71) appear very promising and have been
already used to study some conformational movements of the
DNA.72

Current areas of research in MD simulations of nucleic
acids

MD and related techniques are being used by a large number of
research groups to study properties of nucleic acids. It is out of
the scope of this paper to comment on all the relevant
publication in this field, and the reader is addressed to recent
reviews3,5,7,8,64 for comprehensive reviews of MD simulations
of nucleic acids. We will limit ourselves to noting the big areas
of current use of MD for the analysis of nucleic acids, trying to
remark on the type of information that is derived from these
simulations.

Structural studies. The ability of current MD simulations to
reproduce the structure of standard nucleic acids is good, but
this is not surprising, since structural information on canonical
nucleic acids structures has been (directly or indirectly) used in
the parametrization process. More surprising is the ability of the
technique to reproduce subtle structural properties like minor
groove narrowing in A-tracks of B-type DNA or the bending in
DNA induced by phosphate neutralization (see refs. 5,7 and 8).
Even more remarkable is the astonishing capability of MD to
describe anomalous nucleic acid structures, which were not
considered in any way during the parametrization process: H-
type RNA pseudoknots in viruses,73 PNA-hybrids,74 duplex
RNAs,75 DNA·RNA hybrids,74 ribozymes,75 tRNA,76 i-
DNA,77 G-DNA,78 and triplexes,47 as well as other structures
not experimentally characterized before the simulation like the
Hoogsteen and the reverse Watson Crick parallel DNA
duplexes.67 In several cases the MD simulations were able to
reproduce properly the structural properties of nucleic acids,
even when the starting configurations were incorrect. In other
cases, where the incorrect fold was found to be a metastable

conformation, the MD trajectories showed the higher stability
of the correct versus the incorrect fold. Clearly, and despite their
caveats (largely commented above), MD simulations are now
one of the most powerful structural tools to study nucleic acid
structures.

Analysis of the solvent environment. MD provides a
microscopic picture of the solvent environment around nucleic
acids. The technique has been used to study the first hydration
shell and the Na+ distribution around RNA and specially DNA
duplexes. Any current MD simulation is able to reproduce the
“spine of hydration” of B-type DNA, and the specific solvation
patterns of duplex RNA.3,5,7,8,74,79,80 The relaxation time of Na+

is quite large, and in our own experience, memory of the initial
position of the Na+ might exist after 15 ns of MD simulation,
generating equilibration problems with the simulation. How-
ever, even with this problem, MD simulations have been useful
to qualitatively describe the preferred regions for residence of
Na+. For example, the temporary residence of Na+ ions inside
the minor groove of B-type DNA, which has been subject to an
intense debate among crystallographic groups in recent years,
was in fact anticipated years before in unrestrained MD
simulations by Beveridge’s group.81

Analysis of the impact of chemical modifications in DNA.
MD constitutes a fast alternative to experimental techniques to
study the impact of mutations on the structure of nucleic acids,
provided that structural changes induced by chemical altera-
tions of the nucleotides are small. Examples of chemically-
modified nucleotides studied by MD simulations included DNA
methylation at cytosines,82 DNAs containing benzo[a]pyrene–
adenine adducts,83 photodamaged DNAs,84 DNA containing
oxanosine,85 inosine,86 or DNA containing apolar isosters of the
nucleobases.87 The impact in DNA of some alterations in the
backbone, including the introduction of phosphoramidates,88

peptide nucleic acids89 and other modifications have been also
studied.

Dynamic properties of nucleic acids. The demonstration
that MD was able to represent the AÔB conformational
transition opened the possibility of using MD simulations to
reproduce the dynamic properties of nucleic acids. Despite the
shortcomings derived from the short time scale of the MD
trajectories, many interesting dynamic features have been
analysed, such as the breathing of natural or non-natural base
pairs,87 the dynamic properties of bendable sequences,86 the
elastic properties of different sequences of DNA,57 or the
deformability of DNA or RNA in the presence of proteins.68,69

The shortcomings derived from the limited extension of current
simulations were partially overcome by using model systems
showing faster transitions, by the use of essential dynamic
procedures, or by considering samplings biased following
WHAM, TI, MD or US protocols.

Complexes of nucleic acids with other molecules. MD
simulations have been used to describe the properties of nucleic
acid–drug complexes, including both minor groove binders and
intercalators.90–92 Most calculations were carried out for
canonical duplexes of DNA, but simulations of RNA–drug
complexes and of complexes between anomalous DNA struc-
tures (such as the G-DNA) and small drugs have been also
published. Interestingly, MD trajectories not only reproduced
accurately structural details of the complexes, but also distin-
guished between possible binding modes or predicted binding
free energies. A similar explosion in the use of MD has occurred
for the study of complexes between nucleic acids and proteins.

Fig. 7 Example of a thermodynamic cycle used to compute the difference in
free energy of binding to the DNA of two drugs X and Y. The magnitude of
interest is the DG(1)–DG(2), while that computed is DG(B)–DG(A)
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Traditionally these studies were focused on the description of
subtle structural characteristics, but with the improvement in the
methods for calculation of free energies several authors have
explored the stability of proteins and nucleic acids com-
plexes.92–96

The future

Rationalization of the evolution of a field in the past is always
easier than the prediction of its future evolution. However, few
general trends for the future might be suggested. It is expected
that the capabilities of computers will continue to grow and their
prices will continue to fall, which is expected to lead to: i) the
use of more accurate simulation systems and simulation
protocols, and ii) the consideration of bigger, more realistic
systems for simulation. In turn, we can expect methodological
developments to extend the validity of simulation techniques to
systems where current empirical force-fields do not lead to
correct results.

The target of modelling studies in the nucleic acid field might
change in part in the near future. More effort will be directed to
the study of higher order structures of nucleic acids, and on the
interaction between nucleic acids and proteins, trying to
understand the molecular mechanisms which control nucleic
acid function. The modeller should be ready to work with large
and flexible macromolecular systems including systems as large
as the ribosome. The anomalous forms of nucleic acids will
focus more attention due to their biotechnological and bio-
medical interest, and to the difficulties of studying these
systems with experimental techniques. Clearly, integration of
low resolution mesoscopic techniques with atomic-detailed
calculations is going to be necessary to cover the vast range of
problems expected for the near future.

An important change in the field will appear as a consequence
of the evolution of experimental techniques in the biochemistry
laboratory. Genomic and proteomic techniques, which are now
universally present in the laboratory provide massive amounts
of data, which should be processed using fast coarse-grain
theoretical methods. Recent works by Lavery’s group, which
used the “lexide” approach with rigid geometries to scan the
ability of a vast amount of sequences to interact with a give
protein, or the recent development by Beveridge’s group of a
Hidden Markov’s Model trained from sequence and MD data to
predict regions in the DNA with propensity to bind the CAP
protein97 are excellent examples of this convergence between
modelling and bioinformatics. Clearly, an exciting future is
coming for our community.
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